Editor-In-Chief

Dr. Shiv Kumar
Ph.D. (CSE), M.Tech. (IT Honors), B.Tech. (IT)
Senior Member of IEEE, Member of the Elsevier Advisory Panel
Chairman: Lattice Science, Bhopal (M), India
Specialization: Sound Processing, Image Processing and Recognition, Compression and Decompression

Editors

Prof. Dr. Takialddin Al Smadi
PhD. (ECE) M.Sc. (ECE), B.Sc (EME),
Member of the Elsevier
Professor, Department of Communication and Electronics, Jerash University, Jerash, Jordan.
Specialization: Electronic Engineering

Dr. Bhagya R
Ph.D (TE), M.Tech. (TE), B.E (CSE)
Member of IEEE
Associate Professor, Department of Telecommunication Engineering, RV College of Engineering, Bengaluru (Karnataka), India.
Specialization: Wireless Communication, V2V Communication, Networking, MIMO, OFDM

Dr. K.V.N. Kavitha
PhD. (Wireless Communication), M.Tech. (Applied Electronics), MBA(HRM), B.Tech(ECE)
Member of IEEE, Elsevier
Associate Professor, Department of Communication Engineering, VIT University, Vellore (Tamil Nadu), India.
Specialization: MIMO, OFDM, WiMax

Dr. E.N. Ganesh
Ph.D.(ECE), M.Tech.(VLSI), B.Tech.(ECE)
Dean, Department of Electronics & Communication Engineering, Vels University, Chennai, (Tamil Nadu), India.
Specialization: Nanoelectronics, IoT, Medical Image Processing

Dr. Manjula BM
PhD.(Signal Processing), M.Tech(Electronics), B.E (E&C)
Associate Professor, Department of Electronics and Communication Engineering, Nitte Meenakshi Institute of Technology, Bangalore (Karnataka), India.
Specialization: Signal Processing

Dr. Victor N. Okorogu
Ph.D.(Comm. Engineering), MBA(Management),M.Tech.(EEE), BE(EEE)
Member of IEEE
Associate Professor, Department of Electronic and Communications Engineering, Nnamdi Azikiwe University, Awka Anambra, Nigeria.
Specialization: Digital Antennas, Digital Microwave Communications Systems, Lasercom and IoT
Dr. Madhu Patil
Assistant Professor, Department of Electronics & Communication Engineering, Nitte Meenakshi Institute of Technology, Bengaluru (Karnataka), India.

Dr. P. N. Sudha
Ph.D.(ECE), M.Tech.(Digital Elec.), BE.(EC)
Member of IEEE
Professor & Head, Department of Electronics and Communication Engineering, Kammavari Sangha Institute of Technology, Bengaluru (Karnataka), India.
Specialization: Wireless Communication, Digital Electronics, Electronics & Communication

Prof. Hansa Shinrakhia
ME.(Communication Systems Engineering), BE.(Electronics & Communication)
Member of IEEE, PubMed
Assistant Professor, Department of Electronics & Communication Engineering, Indus University, Ahmedabad (Gujarat), India.
Specialization: Signal, Image & Video Processing, Computer Vision, Communication Engineering

Dr. Mahalinga V. Mandi
Ph.D(ECE), M.Tech (Industrial Electronics), B.E.(ECE)
Member of IEEE
Associate Professor, Department of Electronics & Communication Engineering, Dr. Ambedkar Institute of Technology, Bangalore (Karnataka), India.
Specialization: Chaos Based DS-CDMA Communications, Design, Analysis and Testing, Information Hiding, Network Steganography
<table>
<thead>
<tr>
<th>Author (s) Name</th>
<th>Title of the Article</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hassan Rahnaward Ghulami, Abdul Samad Roesh, Mohammad Reza Ibrahim, Mohammad Akbari, Hossein Mohammadi</td>
<td>Facebook Addiction among Afghan University Students: A Structural Equation Modelling</td>
<td>1-4</td>
</tr>
<tr>
<td>Kalaivani D</td>
<td>VANET: Framework, Challenges and Applications</td>
<td>5-5</td>
</tr>
<tr>
<td>Mohammed M. Ahmed</td>
<td>Salp Swarm Optimization Approach For Maximization The Lifetime Of Wireless Sensor Network</td>
<td>6-7</td>
</tr>
<tr>
<td>Anurag Sinha, Amrit Kumar Bhadani</td>
<td>Double Layer Cryptography using Multiplicative Cipher and Chemical Periodic Table</td>
<td>7-8</td>
</tr>
<tr>
<td>Mirza Arif Baig</td>
<td>An Efficient Cluster Based Routing Protocol (Eccrp) Technique Based on Weighted Clustering Algorithm for Different Topologies in Manets using Network Coding</td>
<td>8-9</td>
</tr>
</tbody>
</table>
Title of the Article: Facebook Addiction among Afghan University Students: A Structural Equation Modelling.

Abstract: The current research intends to evaluate the validity and reliability of the adopted model-BFAS, and investigate relationship between the motives and Facebook addiction in Afghanistan. The adopted instrument were online distributed to undergraduate and postgraduate students and only 431 responded across the country to determine their intentions for using Facebook. The software of RStudio used for descriptive analysis and SEM-PLS approach was applied to hypothesis the relationship between the constructs. Results showed that the BFAS measures intensity of Facebook addiction, although measurement model was reliable and structural model has discriminate validity. Further, the results show that students use Facebook for communication, social interaction and entertainment, and these motives positively predicted Facebook addiction. Based on the results, authors believe that the Facebook addiction is a phenomenon that exists across the countries, and greater use of Facebook would tend to create problem of addiction. In sum up, this research would help parents, serves provider, policy makers, current Facebook users, and students to control their excessive use of Facebook.

Keywords: Facebook; Addiction; SEM; Motives.

References:

Author(s): Kalaivani D.

Title of the Article: VANET: Framework, Challenges and Applications.

Abstract: Vehicular Ad-Hoc Network (VANET) is one of the essential research field because of large increase in usage of vehicles on road. Many VANET applications are employed to improve road safety conditions, vehicle traffic, an emergency warning to vehicle drivers, collision avoidance and other non-safety applications for comfort. The main aim of these applications are to modernize the various processes associated with road traffic, vehicles, drivers, passengers and pedestrians by implementing smart transport systems. This study is to implement an intelligent vehicular transport design to improve the road safety, navigation and comfort. VANET communication technology is a combination of mobile vehicles with ad hoc networks. The purpose of this research is to predict and prevent road accidents by transmitting emergency messages using vehicular network technology. While transmitting emergency messages, the VANET has various challenges. They are High mobility of the vehicles, Dynamic topology, Wireless communication, Minimum transmission delay, Connectivity of the network, optimal usage of transmission power. These challenges leave the vehicular networking disconnected and make an exchange of information very difficult. Even though many researchers have done significant work during the last decade on vehicular networking, some problems have not yet been solved.

Keywords: Clustering, Intelligent Transport System, Medium Access Control, Routing Protocols, Vehicular Ad-hoc Networks, Wireless Access in Vehicular Environment.

References:

Author(s): Mohammed M. Ahmed.

Title of the Article: Salp Swarm Optimization Approach For Maximization The Lifetime Of Wireless Sensor Network.

Abstract: In recent years, the maximization of a lifetime for wireless sensor networks is considered an important area for researchers. The wireless sensor networks (WSNs) contain two types of sensors that called sensor nodes and sink nodes which sensor node send information to the central node (sink node) that collected its data. Choosing the best location of sink node considered the critical problem that faces the lifetime of wireless sensor networks. In this paper, we propose a method that choosing best location of a sink node by applying Salp Swarm Algorithm (SSA) after determining sink node location we create transmission paths between the sink node and rest of nodes using Prim's minimum spanning tree to choose shortest paths. Accordingly, for fitness function that used to decrease energy consumption for a network. Simulation results clarify that our proposed algorithm that solves localization of sink node presents the best results for prolonging the network's lifetime compared to Cat Swarm Optimization algorithm (CSA) and Particle Swarm Optimization (PSO).

Keywords: Wireless sensor networks (WSNs), sink node placement, Salp swarm algorithm (SSA).

References:
16. B. Y. Wu, K.-M. Chao, Spanning trees and optimization problems (ex-eript).

Author(s): Mohammed M. Ahmed.

Title of the Article: Salp Swarm Optimization Approach For Maximization The Lifetime Of Wireless Sensor Network.

Abstract: In recent years, the maximization of a lifetime for wireless sensor networks is considered an important area for researchers. The wireless sensor networks (WSNs) contain two types of sensors that called sensor nodes and sink nodes which sensor node send information to the central node (sink node) that collected its data. Choosing the best location of sink node considered the critical problem that faces the lifetime of wireless sensor networks. In this paper, we propose a method that choosing best location of a sink node by applying Salp Swarm Algorithm (SSA) after determining sink node location we create transmission paths between the sink node and rest of nodes using Prim's minimum spanning tree to choose shortest paths. Accordingly, for fitness function that used to decrease energy consumption for a network. Simulation results clarify that our proposed algorithm that solves localization of sink node presents the best results for prolonging the network's lifetime compared to Cat Swarm Optimization algorithm (CSA) and Particle Swarm Optimization (PSO).

Keywords: Wireless sensor networks (WSNs), sink node placement, Salp swarm algorithm (SSA).

References:
16. B. Y. Wu, K.-M. Chao, Spanning trees and optimization problems (ex-eript).
In this paper we be inclined to propose a two-level encryption in this paper in the first level encryption we use the multiplicative ciphers and Caesar cipher in this level the plain text letters, we shall multiply the key numbers in this level and the second layer encryption we use periodic table exploitation the properties if the quality table, and thus use it for encrypting and decrypting in the same manners. For the information of network security in the second level encryption we will differently types of periodic table properties like atomic no, mass no, IUPAC name, chemical formula, and their properties.

Keywords: Periodic table, Multiplicative cipher, Double Layer cryptography, Random Cipher.

References:
Title of the Article: An Efficient Cluster Based Routing Protocol (ECCRP) Technique Based on Weighted Clustering Algorithm for Different Topologies in MANETs using Network Coding.

Abstract: All nodes are energy constrained in MANET. In such a scenario, reducing energy consumption is necessary. The goal of this study is to minimize the energy utilization of various types and environments in MANETs using network coding in a CBRP. Consider other CBRP such as energy-efficient unmanned aerial vehicle fitness (EEFUAV) and compare its performance with the ECCRP and CBRP by taking into account node mobility, traffic and transmission range. Network coding is a way to enhance the efficiency of wireless networks. Energy Requirements, of the EEFUAV approach is intended to be developed to improve the performance of the CBRP and Energy ECCRP.

Keywords: Effective cluster-based routing protocol (ECCRP), clustered-based routing protocol (CBRP), energy-efficient fitness of unmanned aerial vehicles (EEFUAV) Mobile adhoc networks (MANET).

References: