
Indian Journal of Data Communication and Networking (IJDCN)
ISSN: 2582-760X (Online), Volume-1 Issue-3, June 2021

41

Published By:
Lattice Science Publication (LSP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijdcn.C5015061321
DOI:10.54105/ijdcn.C5015.061321
Journal Website: www.ijdcn.latticescipub.com

Android Security Analysis using Mobile Sandbox
Munishka Vijayvergiya, Abhignya Tayi

Abstract: Today, smartphones and Android devices are
effectively in development like never before and have become the
easiest cybercrime forum. It is necessary for security experts to
investigate the vengeful programming composed for these
frameworks if we closely observe the danger to security and
defence. The main objective of this paper was to describe Mobile
Sandbox, which is said to be a platform intended to periodically
examine Android applications in new ways. First of all in the
essence of the after-effects of static analysis that is used to handle
the dynamic investigation, it incorporates static and dynamic
examination and attempts to justify the introduction of executed
code. On the other hand, to log calls to native APIs, it uses those
techniques, and in the end, it combines the end results with
machine learning techniques to collect the samples analysed into
dangerous ones. We reviewed the platform for more than 69, 000
applications from multi-talented Asian international businesses
sectors and found that about 21% of them officially use the local
calls in their code.

Keywords: The Main Objective of This Paper Was To
Describe Mobile Sandbox

References:
1. Mobile sandbox : using static and dynamic

analysis.http://campar.in.tum.de/pub/spreitzenbarth2015mobilesandb
ox/spreitzenbarth2015mobilesandbox.pdf

2. Android Developers.: Android platform versions
http://developer.android.com/about/dashboards/index.html

I. INTRODUCTION

 Smartphone sales have impressively hit the next stage
in recent years. The attention of cybercriminals who try to
manoeuvre the user into installing harmful software on the
computer was drawn to this phenomenal growth. We tried to
understand about 6,100 harmful applications in previous
work and assembled them with the aid of the VirusTotal
API into 51 malware institutions. In addition, 45 percent of
our malware institutions sent text messages. Interestingly,
these messages were sent to affect individuals such as
industrialists, the numbers of politicians to make money
immediately.

Until recently, the research was performed manually
with the aid of manpower using instruments such as
compilers and debuggers with their own intelligence, which
takes a lot of time and, depending on the expert's ability,
often results in errors. Tools were therefore built.

Manuscript received on 21 May 2021 | Revised Manuscript
received on 03 June 2021 | Manuscript Accepted on 15 June
2021 | Manuscript published on 30 June 2021.
* Correspondence Author

Munishka Vijayvergiya*, SCOPE, Vellore Institute of Technology,
Chennai, India. Email: munishka.vijayvergiya2019@vitstudent.ac.in

Abhignya Tayi*, SCOPE, Vellore Institute of Technology, Chennai,
India. Email: tayi.abhignya2019@vitstudent.ac.in

© The Authors. Published by Lattice Science Publication (LSP). This

is an open access article under the CC-BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

A static analytical approach, focused on signature
detection of applications, serves as a popular antivirus
technology approach.

The back or trap door uses the approach in use where the
unintelligible methods are made more difficult for static
study.

By using the read elf utility, they worked to take out the
function calls from an Android application and made the
difference in producing the list of familiar malware info.
Malware writers created the behaviour of rendering
ambiguous methods that have been shown to be successful
against changeless research, parallel to the environment of
desktop PCs.

References:
1. Dimjasevic, M., e. a. (2015). Evaluation of android malware

detection based on system calls.
https://dl.acm.org/doi/abs/10.1145/2875475.2875487

2. Guptil, B. (2013). Examining application components to
reveal android malware. https://scholar.afit.edu/etd/868/

II. BACKGROUND

With the notable usage of smartphones and the
distribution model of applications, criminals are making
their work easy with the help of smartphones as a potential
target for malware to steal private information, misuse it for
premium SMS services, or try to manoeuvre necessary
banking information (mTAN) on these devices. Sometimes,
we can even find these threats within one hostile app. In this

area of paper, we give a short overview of current mobile
threats and describe why and how the Android platform is
the most targeted mobile platform. Mobile threats are
categorized into two classes: web-based and application-
based threats.

These threats depend on the rigorous usage of mobile
browsers and their numerous options of usage of
implementations.

- malware is the software it is designed to cause damage
to the mobile sandbox.it has the potential to wipe out all the
data in the mobiles.

- personal spyware gathers personal information and it
relays on data firms, advertisers etc.normally it tracks and
sells your internal usage data, and captures the credit card
and bank account information.

- Grayware operates similarly to malware, but it is not
transmitted to harm users directly. It won't affect the
functionality of the system . Above all, information about us
patterns is collected for the purpose of selling any of this
data or to make advertisements in a manner.
References:
1. Static and dynamic analysis of Mobile malware .

https://www.researchgate.net/publication/314521542_Static_and_Dy
namic_Analysis_of_Android_Malware

2. https://scholarworks.sjsu.edu/cgi/viewcontent.cgi?referer=&httpsredi
r=1&article=1488&context=etd_projects

http://campar.in.tum.de/pub/spreitzenbarth2015mobilesandbox/spreitzenbarth2015mobilesandbox.pdf
http://campar.in.tum.de/pub/spreitzenbarth2015mobilesandbox/spreitzenbarth2015mobilesandbox.pdf
http://android.com/about/dashboards/index.html
mailto:munishka.vijayvergiya2019@vitstudent.ac.in
mailto:tayi.abhignya2019@vitstudent.ac.in
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://scholar.afit.edu/etd/868/
https://scholarworks.sjsu.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=1488&context=etd_projects
https://scholarworks.sjsu.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=1488&context=etd_projects
https://scholarworks.sjsu.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=1488&context=etd_projects
https://crossmark.crossref.org/dialog/?doi=10.54105/ijdcn.C5015.061321&domain=www.ijdcn.latticescipub.com
http://doi.org/10.54105/ijdcn.C5015.061321

Android Security Analysis using Mobile Sandbox

42

Published By:
Lattice Science Publication (LSP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijdcn.C5015061321
DOI:10.54105/ijdcn.C5015.061321
Journal Website: www.ijdcn.latticescipub.com

III. OBJECTIVES

The main aim of our project is to explore the static and
efficient ways of using software tools to detect malware on
Android, compare and decide the best method. As we all
know, cyber crime is rising day by day, so Android is
increasingly focusing on it. For researchers to evaluate
hateful applications written for programmes, knowing the
safety and privacy risks is important. Mobile-Sandbox is a
software designed to test Android apps in several ways
automatically. It includes static and dynamic analysis, i.e.
the static analysis outcomes used to direct dynamic analysis
and increase the generated code coverage.

IV. SYSTEM ARCHITECTURE AND
IMPLEMENTATION

To search for malicious software, both static and
dynamic analysis have been deployed. In order to identify
applications as malicious or benevolent, static analysis uses
machine learning and these results can be used in dynamic
analysis. The programme is performed in an emulator in
dynamic analysis and every process is logged in. The system
uses some methods to log calls to native APIs, which is an
essential process since certain malicious applications can
call certain functions outside their native codes, and it is
crucial to track all these activities. To give final results, all
these outcomes are then combined.

A. Static Analysis:

Static analysis initially checks the app downloaded and
its source code. Many antivirus technologies use signature
based-detection of apps and a similar approach is used by
static analysis. Many malware systems have begun to use
certain obfuscation techniques. These techniques make static
analysis trickier and can often surpass static analysis without
being caught as malicious. One such method used by many
android applications is concealing certain dangerous
activities. They do this by calling functions outside the
Dalvik/Java runtime library. These risky functions may be
written in C/C++. This is where Dynamic analysis comes
handy.

Firstly, the hash value of the database is checked with a
database called VirusTotal. This tells us how many tools
have marked this application as malicious with regards to
the total number of tools that inspected this application.
Then, all the files of the application are unzipped using
WinZip and all the permissions required by the particular
application are checked. Here, reading the SDK version
becomes important because only if the application is
compatible with our android system, it is sent for dynamic
analysis. Otherwise, its discarded. After this process, parsing
of certain files is done. This is automated. There are certain
functions which are known to be dangerous for android
security like sendTextMessage(), getPackageInfo(),
getSimCountryIso() and all these functions are checked for.

Another check is performed to evaluate any encryption
techniques used in the application. Over and underprivileged
applications are very important to check for here because
when combined, they can greatly threaten the security of a
device. Thus, this is also monitored in the static analysis.
Once the entire process of static analysis completes, an
XML file is generated which contains all the data that has
been collected in the previous steps.

B. Dynamic Analysis:

Dynamic analysis looks at the run-time behavior of an
application. This helps to figure out many threats/ dangerous
activities which may have been missed during static
analysis. Dynamic analysis executes the application being
inspected in a controlled environment called sandbox. Every
relevant operation of the execution of the application such as
sending SMS messages, reading data from storage, and
connecting to remote servers, is monitored and a report is
generated. Though Dynamic analysis handles obfuscation
techniques, it is circumvented by runtime detection methods.
This is why, it's important to combine static and dynamic
analysis.

For dynamic analysis, the Android emulator provided by
Google is used. This emulator can also be set to its previous
state once the application has been tested. This is an
advantage. The latest version of Droidbox has been used as
the basis for dynamic analyzer to make it compatible with
the recent android versions. Droidbox however lacks the
support needed to track native API calls which is why
Android NDK has also been used. ltrace command has also
been used to track the code. All this information including
the native calls required to check shared objects is
documented in separate files. Wireshark is a network
simulation tool and it has also been used to monitor all the
data sent over a network. Most applications require user
interaction for them to be assessed properly and Ranorex
Studio has been used for the same. It generates a number of
interaction elements which are sufficient to track all possible
activities of the application.

References:
1. Tamara, H., e. a. (2007). Design and evaluation of dynamic software

birthmarks based on api calls. Nara Institute of Science and
Technology, Technical Report.
https://www.academia.edu/4149097/Design_and_Evaluation_of_Dy
namic_Software_Birthmarks_Based_on_API_Calls

2. Zhou, Y., e. a. (2012a). Detecting malicious apps in official and
alternative android markets. Proceedings of the Second ACM
Conference on Data and Application Security and Privacy.
https://www.csd.uoc.gr/~hy558/papers/mal_apps.pdf

3. Saudi, M., e. a. (2015). Android mobile malware surveillance
exploitation via call logs: Proof of concept. 17th UKSIM-AMSS
International Conference on Modelling and Simulation.
https://uksim.info/uksim2015/data/8713a176.pdf

4. .Wang, X., e. a. (2009). Detecting software theft via system call
based birthmarks. Proceedings of 25th Annual Computer Security
Applications Conference.
http://www.cse.psu.edu/~sxz16/papers/acsac09.pdf

5. Fuchs, P., e. a. (2009). Scandroid: Automated security certification
of android applications. Technical Report CSTR-4991, Department
of Computer Science, University of Maryland,College Park.
https://www.scitepress.org/Papers/2017/62567/

6. Hand, J., e. a. (2001). A simple generalisation of the area under the
roc curve for multiple class classification problems.
http://www.defaultrisk.com/pa_test_05.htm

7. Aung, Z., e. a. (2013). Permission-based android malware detection.
International Journal of Scientific Technology Research.
https://www.researchgate.net/publication/288267309_Permission-
Based_Android_Malware_Detection

http://doi.org/10.54105/ijdcn.C5015.061321

Indian Journal of Data Communication and Networking (IJDCN)
ISSN: 2582-760X (Online), Volume-1 Issue-3, June 2021

43

Published By:
Lattice Science Publication (LSP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijdcn.C5015061321
DOI:10.54105/ijdcn.C5015.061321
Journal Website: www.ijdcn.latticescipub.com

V. USE CASE DIAGRAM

Figure 1

This figure shows the use case diagram of android

security analysis using mobile sandbox

VI. DFD DIAGRAM

Level 0

Figure 2

This figure shows the DFD level 0 diagram of android

security analysis using mobile sandbox

Level 1

Figure 3

This figure shows DFD level 1 diagram of android
security analysis using mobile sandbox

Level 2

Figure 4

This figure shows DFD level 1 diagram of android

security analysis using mobile sandbox

VII. EVALUATION

For mobile sandbox system the following aspects are
being evaluated:

1. Correctness
2. Performance
3. Detectability

A. Correctness:

Using correctness , the entry to the application i.e
Mobile sandbox can only be done if the proper actions are
being performed by the analysed app .If these actions satisfy
one can access the log file of the mobile sandbox .
Methods to check correctness:
1. We can use data visualisation techniques ie Machine

learning to find the most sophisticated malware using
plots such as scatter plot, heat maps and line plot.

2. The sample we chose consists of various families of
android malware which is meant to assure the coverage
of malicious actions. The sample data is given below.

Table 1

http://doi.org/10.54105/ijdcn.C5015.061321

Android Security Analysis using Mobile Sandbox

44

Published By:
Lattice Science Publication (LSP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijdcn.C5015061321
DOI:10.54105/ijdcn.C5015.061321
Journal Website: www.ijdcn.latticescipub.com

The following describes different android malware
families that are intended to ensure malicious activities are
protected.
 A -> installs additional apps
 B -> Botnet characters
 C -> compromises local storage
I -> Steals private related data
 L -> steals location data
 R -> gains root access
S -> sends SMS messages

Figure 5

Figure5 describes the correctness scatter plot of the

various families of android malware using machine learning
techniques.

Figure 6

Figure 6 describes the correctness linear plot of the

various families of android malware using machine learning
techniques.

Figure 7

 Figure 7 describes the correctness heat map of the

various families of android malware using machine learning
techniques.

These two methods are used to find the most
sophisticated and least sophisticated data .

From the considered data the most sophisticated
malware sample is “RootSmart” and the least dangerous
Malware family is “TapSmart”.

A. Performance :

This system, i.e., The mobile sandbox is powered by
Intel Xeon2 . In general, it takes 3s for a mobile sandbox to
check viruses in the system and additional 10s - 15s would
be required for subsequent static analysis. Cleaning and
rebooting a new version takes the machine roughly 3
minutes. It takes a further 4-6 minutes to instal and
download the application after rebooting. It takes another 8-
10min for the programme execution and monkey runner
scripts to run. The application's execution time is solely
dependent on the application's duration. It takes another 2s
to record all the files after shutting down the emulator. This
is how success takes place and it is revised from time to
time. For performance enhancement or to reduce the time
taken, dynamic analysis may be used for improvement.

B. Detectability :

There are mechanisms in the Windows environment to
detect sandbox environments and virtualized ones to
transform this method into a malicious programme.
Detectability plays a major role in the research platform for
safety purposes . The following table describes the malware
family and the number of samples of malicious data.

We can use machine learning techniques to plot data and
understand which malware family is harmful.

Table 2

The following table describes the malware family and

the number of samples of malicious data.

http://doi.org/10.54105/ijdcn.C5015.061321

Indian Journal of Data Communication and Networking (IJDCN)
ISSN: 2582-760X (Online), Volume-1 Issue-3, June 2021

45

Published By:
Lattice Science Publication (LSP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijdcn.C5015061321
DOI:10.54105/ijdcn.C5015.061321
Journal Website: www.ijdcn.latticescipub.com

Figure 8

Figure 8 describes the detectability scatter plot of the

various families of android malware using machine learning
techniques.

Figure 9

Figure 9 describes the detectability linear plot of the

various families of android malware using machine learning
techniques.

 Figure 10

Figure 10 describes the detectability heat map of the
various families of android malware using machine learning
techniques.

References :
1. Abah, J., e. (2015). A machine learning approach to anomaly-based

detection on android platforms. International Journal of Network
Security and Its Applications
https://www.researchgate.net/publication/286637377

2. A_Machine_Learning_Approach_to_Anomaly-Bas

ed_Detection_on_Android_PlatformsShalizi, C. (2016). Logistic
regression. Advanced Data Analysis from an Elementary Point of
view.
https://www.stat.cmu.edu/~cshalizi/ADAfaEPo
V/ADAfaEPoV.pdf

3. Feng, Y., e. a. (2014). Apposcopy: semantics-based detection of
android malware through static analysis. Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of
Software Engineering.
https://dl.acm.org/doi/10.1145/2635868.2635869

4. Vemparala, S. (2016). Malware detection using dynamibirthmarks.
2nd International Workshop on Security & Privacy Analytics
(IWSPA 2016), co-located with ACM CODASPY 2016.
https://arxiv.org/abs/1901.07312

5. Ruggieri, S. (2000). Efficient 4.5. Static and Dynamic Analysis of
Android Malware
https://www.researchgate.net/publication/314521542_
Static_and_Dynamic_Analysis_of_Android_Malware

6. Arp, D., e. (2014). Drebin: Efficient and explainable detection of
android malware in your pocket. 21stAnnual Network and
Distributed System Security Symposium (NDSS).
https://www.sec.cs.tu-bs.de/pubs/2014-ndss.pdf

7. Breiman, L., e. (2013). Random forests. Burguera, I., e. (2011).
Crowdroid: behavior - based malware detection system for android.
Proceedings of the 1st ACM Workshop on Security and Privacy in
Smartphones and Mobile Device.
https://www.ida.liu.se/labs/rtslab/publications/2011/spsm11-
burguera.pdf

VIII. CONCLUSION

In this research paper, we have proposed an updated
version of Mobile Sandbox which uses both static and
dynamic analysis to check for threats in mobile
applications.Each application is thoroughly monitored and
every activity of the application in inspection is checked to
expose all possible security threats to the data and the user..
Although static analysis focuses primarily on the
application's source code, dynamic analysis runs the
application in a structured environment to show all of its
operations. In order to ensure no malicious application is left
off-guard, even native API calls have been reviewed. As
long as the application is on the computer, users can build
an account to sign in and from there, it continuously tracks
all the apps added during its time span, reviews app
permissions and their functions to provide the user and
his/her data with a safe and stable mobile environment.

ACKNOWLEDGEMENT

It is our pleasure to express a deep sense of gratitude to
our professor Vani V. for her constant guidance and
understanding and also having faith in our capabilities to
finish the project.

We would also thank our parents for believing in our
abilities and also providing an emotional cushion whenever
we stumbled. Cheerful due to a number of our classmates
without their support this task wouldn't have been
completed. Especially we thank God for providing me with
new opportunities each time.

REFERENCES

1. Mobilesandbox : using static and dynamic
analysis.http://campar.in.tum.de/pub/spreitzenbarth2015mobilesandb
ox/spreitzenbarth2015mobilesandbox.pdf

https://www.researchgate.net/publication/286637377
https://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/A
https://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/A
https://dl.acm.org/doi/10.1145/2635868.2635869
https://www.researchgate.net/publication/314521542_
https://www.ida.liu.se/labs/rtslab/publications/2011/spsm11-burguera.pdf
https://www.ida.liu.se/labs/rtslab/publications/2011/spsm11-burguera.pdf
http://campar.in.tum.de/pub/spreitzenbarth2015mobilesandbox/spreitzenbarth2015mobilesandbox.pdf
http://campar.in.tum.de/pub/spreitzenbarth2015mobilesandbox/spreitzenbarth2015mobilesandbox.pdf
http://doi.org/10.54105/ijdcn.C5015.061321

Android Security Analysis using Mobile Sandbox

46

Published By:
Lattice Science Publication (LSP)
© Copyright: All rights reserved.

Retrieval Number:100.1/ijdcn.C5015061321
DOI:10.54105/ijdcn.C5015.061321
Journal Website: www.ijdcn.latticescipub.com

2. Android Developers.: Using the Android emulator
https://developer.android.com/guide/developing/devices/emulator.ht
ml.

3. Android Developers.: Android platform versions
http://developer.android.com/about/dashboards/index.html

4. Static and malware detection for Android malware detection
https://scholarworks.sjsu.edu/cgi/viewcontent.cgi?referer=&httpsredi
r=1&article=1488&context=etd_projects

5. Echtler, F.: ltrace for Android.
https://github.com/floe/ltrace

AUTHORS PROFILE

Abhignya Tayi, is currently a 2nd year student
pursuing B.Tech in Computer Science at Vellore
Institute of Technology, Chennai. She is self
directed and self motivated person .She believes in
team work.She is a hardworking individual who
takes interest in sports ,python development , app
development, machine learning, Artificial
intelligence , photography and video editing. She

takes special interest in cloud computing and have done many labs using
quiklab platform .Her research interests include Machine Learning,
Network security , Software development , Mobile application and
Computer Vision. She aims at working as a Software professional in the IT
field at top product based companies .

Munishka Vijayvergiya, is currently a student
pursuing B.Tech in Computer Science at Vellore
Institute of Technology, Chennai. Her research
interests include Android Security, Machine
Learning and Blockchain. She is a highly optimistic
individual who also takes interest in Public
Speaking, Dance and Reading. She firmly believes
in the power of hard-work and sincerity at work.

She also spends considerable time doing web-development and thoroughly
enjoys it. Being an avid reader since her childhood, she also took interest in
writing and gained recognition through CBSE expression series during her
school time. She aims at working as a Software professional in the IT field
while continuing her research-work.

http://android.com/about/dashboards/index.html
https://scholarworks.sjsu.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=1488&context=etd_projects
https://scholarworks.sjsu.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=1488&context=etd_projects
https://github.com/floe/ltrace
http://doi.org/10.54105/ijdcn.C5015.061321

