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Abstract: Maximum likelihood (ML) detection is an optimal 
signal detection scheme, which is often difficult to implement due to 
its high computational complexity, especially in a multiple input 
multiple-output (MIMO) scenario. In a system with Nt transmit 
antennas employing M-ary modulation, the ML-MIMO detector 
requires MNt cost function (CF) evaluations followed by a search 
operation for detecting the symbol with the minimum CF value. 
However, a practical system needs the bit-error ratio (BER) to be 
application-dependent which could be sub-optimal. This implies that 
it may not be necessary to have the minimal CF solution all the 
time. Rather it is desirable to search for a solution that meets the 
required sub-optimal BER. In this work, we propose a new detector 
design for a SISO/MIMO system by obtaining the relation between 
BER and CF which also improves the computational complexity of 
the ML detector for a sub-optimal BER. 

 Index Terms: Maximum Likelihood (ML) Detection, 
Multiple-input Multiple-output (MIMO) 

I. INTRODUCTION 

For any modern communication system, a maximum 

likelihood (ML) detector is preferred due to its best data 
recovery performance [1] but it is computationally very 
expensive to implement. This issue of computational 
complexity in conventional digital machines is problematic as 
it increases the latency with the increase of signal constellation 
size and the number of transmitter antenna (TA). Magnificent 
tele traffic growth in the last decade has pushed the 
computational complexity and latency of a base station (BS) to 
an alarming level. Diversified computational requirements and 
massive growth in the connected user equipment (UE) in 
modern cellular standards make the situation worse. From the 
physical layer point of view, higher complexity operations 
include signal detection, parameter estimation, and various 
other error corrections at the receiver. To address this, several 
low complexity detection schemes were introduced in the 
recent years. 

In [2], complexity of ML detection is reduced using 
Sensitive Bits (SB). [3] proposes a pre-decoder guided local 
exhaustive search mechanism for V-BLAST [4]. In [5] a 
similar reduction in ML complexity is achieved in M-PSK 
modulated systems.  
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Complexity reduction for a spatially modulated system 
is proposed in [6]. A more generic approach with wide 
range of applicability is considered in [7] where 
performance is traded off with computational complexity. 
But this approach doesn’t address the search algorithm, it 

rather deals with the complexity reduction of calculation 
of the cost function (CF). In this work, we try to address 
the search complexity aspect of ML detection. 

In the context of ML search, the extremum values from 
the database of likelihood values dictate the positions of 
decision boundaries in the constellation space. For 
example, for an additive white Gaussian noise (AWGN) 
system, ML detector boils down to a minimum distance 
detector and decision boundaries are the perpendicular 
bisectors of the lines joining any two adjacent 
constellation points. Also, ML minimizes the BER for an 
equiprobable source. If we choose any target BER other 
than the optimum value, then the decision boundaries 
change accordingly and BER increases. We exploit this 
tradeoff in the subsequent sections in order to reduce the 
search complexity in ML detection. Contributions: 

1) In this work, we propose an ML detector which 
looks for a sub-optimal BER while reducing the 
search complexity for ML detection. 

2) The proposed detection is first applied on a single 
input single output (SISO) scenario and then 
extended to a multi-antenna case. 

II. SYSTEM MODEL 

A. SISO 

For a SISO system, a typical data model is given as 

y = hs + w,                                                         (1) 

where h,s,w are channel, transmitted data and AWGN, 
respectively. We assume that s is from the constellation 
space S with cardinality M. For ML detection, the 
likelihood function (LF) corresponding to any s = si is 
given as 

 .             (2) 

 

ML algorithm maximizes (2), which is the same as 
minimizing (y − si)2. So we make the following search 
space Θ for the ML algorithm 

                 Θ = {d0,d1,....,dM−1},                                (3) 
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where di = |y−si| for si ∈ S, i.e. di is the distance between the 
received symbol and ith constellation point. For ML detection, 
finding the optimum value is actually finding the constellation 
point nearest to the received symbol. Therefore, the search 
complexity depends on the size of Θ. For a suboptimal BER 

we search for a value from a desired data set other than Θ. 

This data set, say Θd ⊆ Θ contains all the values 

that ensure that BER is less than the 

maximum allowable BER. With this 

motivation, we first start with a binary 

phase shift keying (BPSK) system. 

 

Fig. 1: Decision boundaries for BPSK 

1) BPSK: Choosing the minimum value from Θ will result 

in decision boundaries being the perpendicular bisectors. So, 
when we choose a sub-optimal value, it is logical to move the 
decision boundary from the midpoint. This is similar to a 
Neyman Pearson (NP) criterion, where the boundary is shifted. 
However, the NP criterion is best suited for binary hypothesis, 
not for multiple ones. As this will lead to the determination of 
the decision boundary value for various constellation points 
and may lead to multi-objective optimization problem. To 
alleviate the issue, we propose to have symmetric decision 
regions. This leads to the concept of a ”NULL” region. Hence, 

if the decision boundary moves in one direction by some 
amount, we will add a mirror image of it on the opposite side 
in order to preserve the symmetry. With this motivation, we 
propose the following detector design for BPSK. 

Let us choose the decision boundaries to be at a distance of 
β from s0 and s1 as shown in Fig. 1. Therefore, we get two 
decision regions (R1 and R3) each at a distance of β from each 
constellation point. In this case, we have an overlapping region 
R2 which creates ambiguity for detection. So, we propose the 
following detection criteria: If y is the received symbol and 
{s0,s1} form the constellation, then 

 
1) If y lies in the region R1, then sˆ= s0. 
2) If y lies in the region R3, then sˆ= s1. 
3) If y lies in the region R2, then decide on sˆ = s0 or sˆ= s1 

with probability . 
4)  

Let us now calculate the average probability of error for this 
new detector. For s1, error occurs when y falls in the region R1 

and error might occur with probability , when it falls in R2. 
From Fig. 2, let us assume that A1 is the area of the curve in R1 

and A2 is the area of the curve in R2. Then, the probability of 
error is given as 

 

 

Fig. 2: Probability of error calculation for BPSK 

For an ML detector, average probability of error is given 
by substituting β = dmin/2 as 

 

      .                                  (5) 

We call it Pmin because it is the least value that can be 
achieved for any value of β i.e., Pe ≥ Pmin. So by choosing 
a different value from Θ instead of the minimum value, 

we increase the probability of error. Hence, it is possible 
to fix a BER (application dependent) that is greater than 
the minimum BER and obtain the value of β from 
equation (4). We obtain a relationship between β and Θd in 
Section-III.B. Also, as we are addressing the issue of 
complexity rather than performance, we will drop the 
channel coefficients from hereon. 
   2) PAM: Let us follow the same procedure for obtaining 
the average probability of error of pulse amplitude 
modulation (PAM). We choose 4-PAM for simplicity. 
The received signal distributions with the proposed 
decision regions are shown in Fig. 3. 

 
Fig. 3: Decision boundaries for 4-PAM 
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∵ P(e) = (P(e/S0)+ P(e/S1)+ P(e/S2)+ P(e/S3)) 4 
 

 

2) 16-QAM case: Similarly, let’s derive the expression 

of the average probability of error for quadrature amplitude 
modulation (QAM). We derive it first for 16-QAM for 
simplicity as follows, 

 

 

The detailed derivation is given in Appendix-B. 
3) M-QAM case: We will generalize the expression for 

M-QAM as, 
4)  

 

The detail derivation is given in Appendix-C. 

B. UNION BOUND 

Before extending to MIMO, we derive the union bound of 
the proposed detector for a SISO link. 
   1) SISO with M-QAM case: To derive the union bound for 
the proposed symmetric based decision regions, we adopt the 
nearest neighbour approximation. We need to categorize the 
constellation depending on the number of neighbours the 
symbol has as per the following table. 

       

where symbols are categorized into edges, interior points and 
others. Therefore, the probability of error for M-QAM can be 
bounded as 

 

where, 

 

 

Notice that this is exactly similar to Eq (8) and it can be 
further simplified to 
 

 
 

   2) MIMO: Consider a Nr × Nt MIMO system (i.e., with 
Nt transmitter antennas and Nr receiver antennas) with an 
AWGN channel. Let Mi − QAM be the modulation of ith 

transmitting antenna then the union bound expression is 
given as (from [8]), 

 . (11) 

Here, the first summation is over all possible input vectors 

) and P2(x,xˆ) is the pair-wise error 
probability given as follows 

, 

where  and . Also, from [8], if 
γ¯c ≫ 1 then P2(x,xˆ) would become 

. (13) 

Then, the simplified union bound expression is 
 

 

III. IMPLEMENTATION 

There are a few problems in this detector to deal with. 
1) Obtaining β from P(e). 
2) Translation of the proposed detector to a search 

algorithm. 

A. Proposed Solution for β 

From Eq (7) it is clear that it is not possible to write a 
closed-form expression for β so we resort to numerical 
methods. We use the Newton-Raphson method to find a 
solution to Eq (7). Let P be the required BER, Pmin be the 
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 Then, the derivative of this function is 
 

 . (16) 

Using the above two equations we start the iteration with β0 = 
0 and the following update equation. 

.                                       (17) 

Comment: For a MIMO system, calculation remains the 
same except that g(β) becomes the Union Bound of Probability 
of Error we calculated in equation (14). 

 

 

 

(a) Decision boundaries for BPSK 

 

(b) Equivalent receiver with just one decision boundary 
Fig. 4: Proposed simplification of the receiver 

 

B. Proposed simplification of Detector 

Implementing this detector requires a uniform distribution 
which adds extra circuitry to the detector. Fortunately, we can 
implement this detector without ever using a uniform 
distribution. Consider the BPSK again as in Fig. 4a, 

Probability of error expressions for this scenario are 

.                                  (18) 
Now, consider the following scenario with only one 
decision boundary as in Fig. 4b. Distance between s0 and 
s1 is dmin and distance between s1 and D1 is β. Probability of 
error in this case is given as, 

   .                                             (19) 

As A3 = A1 and A4 = A1+ A2, we can write 

      .                              (20) 
The motivation for writing the equations in this form is 
clear by observing that P1(e) = P2(e). Now, detection 
criteria for this detector can be written as 

 
Given this criteria, we can now establish the relation 
between β and Θd. Firstly, we fix the BER at P and obtain 
the value of β as described in the last subsection and to 
practically achieve that BER we collect all the di’s such 

that di ≤ β. These di’s form the set Θd. In other words, 
choosing any di ∈ Θd from Θ will achieve the required 

BER. 

IV. NUMERICAL RESULTS 

A. Probability of Hitting 

For an ML detector, probability of hitting a solution in 
the search algorithm for a MIMO system with Nt transmit 
antennas each employed with M-QAM modulation is: 

 

 

For the proposed detector, we changed the search criterion 
to Eq (21) which directly reduces the search space. As we 
are considering an AWGN environment with mean 0 and 
variance N0, all the search elements in Θd are Gaussian 
distributed. Thus, probability of hitting becomes: 
 

 

It can be see that, the proposed detector removes the 
exponential dependency of probability of hitting on the 
transmitter and constellation sizes. Now it’s just a 

function of β that significantly helps in scaling the 
approach for a massive MIMO system. 
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B. Complexity Analysis 

To demonstrate how the proposed receiver compares to the 
ML receiver, we performed the following simulation under the 
conditions. 
• Modulation: 16-QAM with 2 × 2 MIMO. 
• Required BER: P(γ) = 2×Pmin(γ), where Pmin(γ) is the BER 

obtained by ML receiver at the SNR ”γ”. 
We assume perfect channel estimation and equalization here. 

Procedure: 
1) Obtain β(γ0) at any γ0 using Newton-Raphson. 

2) Deploy linear search over the set Θ. 
3) Obtain the number of evaluations the search algorithm 

takes to detect every symbol and average over all the 
symbols (10 million in this case). 

4) Normalize the result to 1 by dividing it with 162. 

5) Repeat the same with the next SNR value. 
ML receiver always takes the same number of evaluations, 

as it needs to find the least value from the set, which is equal 
to the size of the search space. Whereas the proposed receiver 
takes as many evaluations before it hits a value that is less than 
β(γ) (i.e., a value from the set Θd). This probability of hitting a 
solution increases with increasing SNR as the β(γ) value also 
increases with SNR provided P(γ) is kept constant. Hence, the 
number of evaluations required by the proposed receiver 
decreases with increasing SNR as evident from the plot in Fig. 
5. 

 
Fig. 5: Query Complexity vs SNR 

 
Fig. 6: BER vs SNR 

C. BER vs SNR 

We improved the computational complexity but we also 
do not want to trade this off with performance. For this, 
we simulated the BER performance of the proposed 
receiver on the same system as shown in Fig. 6. 

V. CONCLUSION 

In this work, we have proposed a modified ML 
algorithm with application dependent BER. Choosing a 
sub-optimal BER moves the decision boundaries such that 
it increases the number of solutions for the cost function 
which in turn reduces the size of search space for ML 
detection. We proposed a detector design to exploit this 
property while eliminating the NULL regions. Then the 
proposed detector is also extended to a MIMO scenario 
deriving the union bound expression for probability of 
error calculation. This detector achieved a significant 
computational complexity advantage depending on the 
target BER. Simulation results also suggests the same. 

APPENDIX 

A. Let us consider the detector for 4-PAM. 

 

Fig. 7: 4-PAM constellation with new boundaries 

We will calculate the average probability of error for 
this detector and compare it with the proposed detector. 

 

 

where, 

 

Notice that A2 is different from A2 in Section II. 

 

.         (22) 
 
B. Consider 16-QAM as shown in the figure. 

Consider the 

http://doi.org/10.54105/ijdcn.F5025.102622
http://www.ijdcn.latticescipub.com/


 
A Reduced-Complexity Maximum Likelihood Detection with A Sub Optimal Ber Requirement 

6 

Published By: 
Lattice Science Publication (LSP) 
© Copyright: All rights reserved. 
 

Retrieval Number: F5025102622/2022©LSP 
DOI: 10.54105/ijdcn.F5025.102622 
Journal Website: www.ijdcn.latticescipub.com 
 

 
Fig. 8: 16 QAM constellation with new boundaries 

exterior points S0, S3, S12, S15. Probability of detection and 
probability of error of these points are given as 
 

 

 

Similarly for the points S1,S2,S4,S8,S7,S11,S13,S14 (neither 
interior nor exterior points) probability of detection and 
probability of error of these points are given by, 
 

 

 

For the interior points S5,S6,S9,S10, probability of detection 
and probability of error of these points are given by, 

 

 

Total probability of error is given by, 
 

                  

Substituting the values and simplifying it by neglecting 
the second order terms gives, 
 

  (23) 

C. We will derive the general expression 

for probability of 

error of an M-QAM. Generalizing this to 

M-QAM we get√ √ 4 

exterior points, (M − 2)2 interior points and 4(M − 2) 

points that are neither exterior nor 

interior. 

 

 

Simplification gives 
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